Integrated energy policy concerning the sustainable development; characteristics of available energy resources used for power generation by thermal /hydro/wind and other Power Plants in the following period; planning, effective consumption, perspectives of fossil fuels and renewable energy sources exploitation for Power Generation.
Papers selected for Conference Session titled : Energy resources and sustainable development
Dr Miodrag Mesarovć - Energoprojekt Entel
Abstract
To generate eclectricity, power plants use both, non-renewable and renewable sources of primary energy, as well as other natural resources (water, limestone, etc.). Also, for their equipment and construction, different non-renewable natural resources are used, as well as the energy, generated also by the use of natural sources. Since the demand for electricity constantly grows, and natural non-renewable resources are finite, the principle of sustainable development means that power plants, besides environmental acceptability and energy efficiency, satisfy resource efficiency, which often are in conflict. In this report the consumption of natural resources and energy have been analysed for particular types of power plants based on both, non-renewable and renewable sources, extended to their overall life cycle. It was found that such an objective approach changes the accustomed ideas on particular types of power plants.
G.H. Kanevce - Macedonian Academy of Sciences and arts , L.P. Kanevce - Faculty of Technical Sciences, Bitola, Republic of Macedonia
Abstract
In this paper our newest prediction of the electricity consumption in Macedonia up to 2031 is presented, as well as, the possibilities for meeting the Macedonian electricity needs in the analyzed period. The presented results are part of the Macedonian energy system development analysis, conducted using the MARKAL software package. In the last ten years the electricity in Macedonia has been generated by the lignite fired thermal power plants (80%) and the hydropower plants (20%). From the results presented in this paper, in 2031, it is expected that the share of lignite thermal power plants in the electricity generation will be 37%. The nearly same share (34%) will have the natural gas power plants and combined heat and power plants. The share of the large hydropower plants will be 21%. The percentage share of all other renewable energy sources will be 8%.
Apstrakt
U ovom radu su prikazana naša najnovija predviđanja potrošnje električne energije u Makedoniji do 2031. godine, kao i mogućnosti za obezbeđivanje iste u analiziranom periodu. Predstavljeni rezultati su deo analize razvoja makedonskog energetskog sistema koja je sprovedena korišćenjem programskog paketa MARKAL. Tokom zadnjih deset godina električna energija u Makedoniji se proizvodila u termoelektranama na lignit (80%) i hidroelektranama (20%). Prema rezultatima prikazanim u radu predviđa se da, u 2031. godini, udeo termoelektrana na lignit u proizvodnji električne energije bude 37%. Skoro isti udeo (34%) će imati elektrane na prirodan gas i kombinovane termoelektrane-toplane na prirodan gas. Udeo velikih hidroelektrana će biti 21%, a procentualni udeo svih ostalih obnovljivih izvora energije 8%.
Prof. dr Zdravko N. Milovanović, Prof. dr Darko Knežević, Doc. dr Aleksandar Milašinović - Univerzitet U Banjoj Luci, Mašinski fakultet Banja Luka, S. Stepanovića 71, 78000 Banja Luka , Svetlana Dumonjić-Milovanović - Partner inženjering doo, Kralja Nikole 25, 78000 Banja Luka , Jovan Škundrić - Univerzitet U Banjoj Luci, Mašinski fakultet Banja Luka, S. Stepanovića 71, 78000 Banja Luka
Abstract
The location for suggested wind farm is placed on mountain rock "Trusina" 934 and 1180 meters above the sea level. The future wind farm will be placed 15 kilometers southern from Nevesinje and 2.5 kilometers northern form Berkovići. Size and shape of the site is determined according to measurements of the wind potential using the measuring poles of 12 and 50 meters heights, and according to detail analysis for the period from 21st of December 2006 till 10th of June 2009. The measuring process on the pole of 50 meters height is still active and will be continued until the end of 2010. Besides the measuring on the pole of 50 meters height, from November of 2010, on the location of "Trusina" another 12 meters high pole was installed for additional verifying of already measured data. During June of 2011 on "Trusina" location another two poles were installed, one of which is a brand new 50 meters high pole on the location of "Buturovac" and another is 12 meters high pole on the location of "Tovanovo brdo" with the aim of getting more additional data for even further increase of the accuracy of overall data having in mind the size of the "Trusina" location. Calculation of the wind properties has been done according to the collected data. Records of the measured data from the 50 meters high pole have been made using so called "data logger" in form of series for each 10 minutes for values of the wind speed given by seven anemometers (average value, maximal value, minimal value and standard deviation), and data of the wind directions were collected using two wind direction indicators and additional meteorological sensors. Inside the paper the results of the data processing are given in tabular form together with adequate wind speed frequency distribution functions and wind rose diagrams. For the purpose of easier comparing of diagrams, the data for whole measuring period (30 months) and for period of two years (2007 and 2008) were also given. As an additional conformation the database of meteorological station "Dubrovnik", located near the "Ćilipi" airport for the period from 30th of September 1999 till 31st of August 2010 was also analyzed. These data are available in NCEP/SYNOP form (surface synoptic observations). According to the data collected and processed in this way, the calculation of possible number of wind turbines on the specified location has been done so has their arrangement for each wind turbine on micro locations of the future wind farm "Trusina".
Vladimir Mijakovski - University “Sv. Kliment Ohridski”, Faculty of Technical Sciences, Ivo Lola Ribar bb, Bitola, Republic of Macedonia , Vangelče Mitrevski - University “Sv. Kliment Ohridski”, Faculty of Technical Sciences, Ivo Lola Ribar bb, Bitola, Republic of Macedonia , Kire Popovski - University “Sv. Kliment Ohridski”, Faculty of Technical Sciences, Ivo Lola Ribar bb, Bitola, Republic of Macedonia , Nikola Mijakovski - xSoft engineering, Arhimedova bb, Skopje, Republic of Macedonia
Abstract
The Directive 2009/28/EC on the promotion of electricity from renewable energy sources in the internal electricity market defines renewable energy sources as energy from renewable non-fossil sources, namely wind, solar, aerothermal, geothermal, hydrothermal and ocean energy, hydropower, biomass, landfill gas, sewage treatment plant gas and biogases.
Biomass, as energy resource, has been and is an important part of the energy balance of the Republic of Macedonia. In this paper, current status and perspectives for utilization of Municipal Solid Waste (MSW) as an energy source in the Republic of Macedonia, its importance in the future energy mix of the country and tools for its further development, will be analysed.
Jasna Grujić and Maja Stipić - Energoprojekt Entel
Abstract
In accordance with the European trends related to environmental protection and use of renewable energy sources, Republic of Serbia has accepted an obligation to adopt a plan for implementation of Directive 2001/77/EC on the promotion of electricity production from renewable sources. Accordingly, large number of regulations has been adopted, including those that define status of privileged power producer. Entity which is awarded the status of privileged power producer is granted the right to produce and sell electricity in accordance with the so called feed-in tariffs, introduced as an incentive for promoting investments in the field considered. This paper presents concrete solutions of photovoltaic solar power plants installed on the roofs of buildings, embracing their design, construction and commissioning, as well as the legal procedure of obtaining permits and licenses, including acquiring the status of privileged power producer in Serbia
Suzana Kostić - Electrical Engineering Institute "Nikola Tesla"
Abstract
Today, most of the electric energy production is from non-renewable sources such as fossil fuels (coal, oil and natural gas). As is well known, fossil fuels are non-renewable and have a negative consequence on the environment (global warming). Therefore, more and more renewable energy sources are used, such as solar, wind, tides, wave, hydro, small-power energy and geothermal heat.
Although the potentials of renewable energy sources are huge, the current technological development does not make it possible to rely only on them. Most of the energy obtained from renewable sources is water energy, whereas the share of other renewable sources of energy is currently comparatively small. Actually, in parallel with the technological development, the renewable sources of energy are expected to economically compete with the conventional sources of energy. It may be said that the technologies for using wind energy, biomass and solar energy are already becoming more and more mutually competitive. The process of adopting new technologies is still slow, due to comparatively high initial prices. In line with the recognized environmental importance of renewable sources, greater construction of plants using such energy is being promoted.
Renewable energy sources are central issues in the current European Union energy policy. In accordance to that, the European Parliament passed the Directive (2008) on climate changes and energy (the “20-20-20”), and therefore the EU is committed to reducing its emissions of greenhouse gases by 2020 to at least 20% below the 1990 levels, increasing the energy efficiency by 20% and increasing the share of renewable sources in the final energy to 20%.
In 2009, the Serbian Government passed two significant Decrees which systematically regulate the status of producers of electricity using renewable energy sources – the Decree on the measures of incentives for production of electricity using renewable energy sources and combined production of electricity and heat and the Act on acquiring the status of privileged producers of electricity.
Production costs for the different renewable energy sources are determined in this paper: solar power, wind power, small hydro-power and biomass power. They are calculated for different investment costs, different annual electric energy production, the given rate of interest and all that for the given life cycle of the plant. The costs established in this way are compared with purchase prices of renewable energy sources in Serbia and finally, on the basis of that, the economy of investing in renewable energy sources is analyzed.
Zarko Stevanovic - Laboratorija za termotehniku i energetiku, Institut za nueklarne nauke „Vinca“, Univerzitet u Beogradu, Srbija , Nikola Mirkov - Laboratorija za termotehniku i energetiku, Institut za nueklarne nauke „Vinca“, Univerzitet u Beogradu, Srbija , Zana Stevanovic - Laboratorija za termotehniku i energetiku, Institut za nueklarne nauke „Vinca“, Univerzitet u Beogradu, Srbija
Abstract
U ovom radu opisujemo metodologiju za izracunavanje ekstremne brzine vetra na osnovu eksperimentalnih podataka sa meteoroloskog stuba. Precizno odredjivanje ekstremnih brzina vetra presudno je u odredjivanju aerodinamickog opterecenja vetro-turbina, i sluzi kao ulazni podatak prilikom odredjivanja modela vetro-turbine za specificnu lokaciju. Metodologija je bazirana na statistickim modelima iz teorije o generalnim ekstremnim vrednostima. Prikazana metodologija obuhvata odredjivanje tzv. "pedesetogodisnje" brzine vetra, na kojoj su vazeci standardi za proracune aerodinamickog opterecenja vetro-turbina zasnovani. Opisana metodologija ima univerzalni karakter, a tacnost se povecava sa duzinom intervala prikupljanja statistickih podataka.
Jovan Škundrić, Prof. dr Zdravko N. Milovanović - Univerzitet u Banjoj Luci, Mašinski fakultet
Abstract
Vjetar kao čist i lako dostupan obnovljiv energent svakako da predstavlja atraktivan i zanimljiv put kojim može da se krene pri proizvodnji električne energije. Ipak, dobro je poznata činjenica da, barem u uslovima današnjeg vremena, konverzija vjetroenergije u električnu nije nimalo jeftina, čemu zajednički doprinose s jedne strane skupa tehnologija izrade kvalitetnih vjetroturbina i s druge, činjenica da vjetar kao radni medij ima veoma malu gustinu. Upravo iz ovog razloga, a i s obzirom da brzina u izrazu za snagu vjetra, kako je poznato, figuriše sa trećim stepenom, pri odabiru potencijalne lokacije za eksploataciju energije vjetra, od naročitog je značaja poznavanje intenziteta njegove brzine koji može da se očekuje, ali ne samo u smislu informacije o srednjoj godišnjoj brzini, već i o strukturi vjetra u smislu podataka o vjerovatnoćama javljanja pojedinih vrijednosti intenziteta brzine. S tim u vezi, u okviru ovog rada izvršena je analiza uticaja karaktera vjetra na očekivanu raspoloživu količinu energije posredstvom variranja parametra oblika Weibull-ove raspodjele. Dobijeni rezultati računati su numeričkim putem, a na osnovu prethodno formiranih matematičkih modela.
Dejan Mitrović - Masinski fakultet Nis , Branislav Stojanović - Masinski fakultet Nis , Jelena Janevski - Masinski fakultet Nis , Marko Ignjatović - Masinski fakultet Nis , Mirko Stojiljković - Masinski fakultet Nis
Abstract
One of the most important characteristics of biomass boilers is the need for continuous operation with nominal load. In this way, boiler is operated with maximum efficiency, boiler lifecycle elongates and the ratio between heat production and CO2 emissions is considered optimal. On the other side, outside temperature variations determine boiler operation, which is very dynamical, i.e. with frequent changes in operating load. In order to increase overall efficiency, biomass boilers are equipped with heat storage tanks. Heat storage enables accumulation of the surplus energy and provides heating in case when heating loads are relatively small. By applying heat storage, optimal boiler operation is provided throughout the most of the heating season. The goal of this paper is to analyze heat storage temperature variation depending on tank volume, outside temperature and boiler heat capacities. Two typical days were analyzed, with average daily temperatures of -5oC and 5oC. Primary energy savings have been calculated in the case heat storage was to be used in district heating system, for those typical days and for situations with 1 or 2 biomass boilers.
Vitomir Kravarušić, dipl inž, EPS - TE TO Novi Sad
Abstract
Uporedo sa poskupljenjem energenata i energije, a naročito prirodnog gasa, poskupljuju i investicije za izgradnju termoelektrana na fosilna goriva zbog povećanih cena čelika i bakra, a istovremeno se pooštravaju uslovi zaštite životne sredine i uvode veoma skupe mere za sprečavanje globalnog zagrevanja atmosfere. Iz tih razloga se pred konstruktore termoenergetske opreme i investirore termoenergetskih postrojena postavljaju sve ozbiljniji zahtevi u pogledu visoke energetske efikasnosti, jeftinijih investicija, kraćih rokova izgradnje i profitabilnosti poslovanja. Pošto se u Srbiji nije izgradio nijedan veći proizvodni energetski kapacitet u poslednjih 20 godina, Elektroprivredi Srbije bi odgovarao ulazak u pogon elektrane veće snage sa što kraćim rokom izgradnje, do ulaska većih blokova TE na ugalj. Takva mogućnost se pojavila u TE TO Novi Sad gde, pored potreba EPS-a za električnom energijom postoji i potreba za baznom toplotnom energijom za grejanje Novog Sada. Postoji istvremena potreba za električnom i toplotnom energijom pa se planira izgradnja kogenerativnog gasno-parnog postrojenja visoke energetske efikasnosti električne snage oko 450 MWe i toplotne snage oko 300 MWt. Svi povoljni uslovi postoje u pogledu lokacije, plasmana električne i toplotne energije i spremnosti u pogledu saradnje EPS-a i grada Novog Sada. Postoje i objektivne poteškoće oko obezbeđenja kontinualnih isporuka i prihvatljive cene gasa i obezbeđenja finansijskih sredstava za izgradnju ovog postrojenja. Iz tih razloga, vođeni zajedničkim interesima, EPS i grad Novi Sad su, uz saglasnost Vlade Srbije, formirali zajedničko akcionarsko društvo ENERGIJA Novi Sad a.d., radi izbora strateškog partnera za izgradnju novog kogenerativnog postrojenja. EPS i grad Novi Sad ulažu postojeća postrojenja i zemljište, a streteški partner obezbeđuje finansijska sredstva u visini većinskog vlasništva, a preostali deo investicija se obezbeđuje preko komercijalnih kredita. Za ovakav vid poslovne transakcije u EPS-u se mora obaviti korporativna transformacija da bi se mogao uložiti akcijski kapital i po toj osnovi ostvariti upravljačka funkcija u budećem akcinarskom društvu ENERGIJA Novi Sad a.d. U ovom radu se detaljnije govori o performansama savremenog kogenerativnog gasno-parnog postrojenja visoke energetske efikasnosti i novim oblicima investicione izgradnje u EPS-u.